Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Genet Genomics ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657948

RESUMEN

Environment factors such as diet and lifestyle can influence the health of both mothers and offspring. However, its transgenerational transmission and underlying mechanisms remain largely unknown. Here, using a maternal lactation-period low-protein diet (LPD) mouse model, we show that maternal LPD during lactation causes decreased survival and stunted growth, significantly reduces ovulation and litter size, and alters the gut microbiome in the female LPD-F1 offspring. The transcriptome of LPD-F1 metaphase II (MII) oocytes shows that differentially expressed genes are enriched in female pregnancy and multiple metabolic processes. Moreover, maternal LPD causes early stunted growth and impairs metabolic health, which is transmitted for two generations. The methylome alteration of LPD-F1 oocytes can be partly transmitted to the F2 oocytes. Together, our results reveal that LPD during lactation transgenerationally affects offspring health, probably via oocyte epigenetic changes.

2.
Adv Sci (Weinh) ; 11(13): e2306986, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240347

RESUMEN

Previously a ring finger protein 20 (RNF20) is found to be essential for meiotic recombination and mediates H2B ubiquitination during spermatogenesis. However, its role in meiotic division is still unknown. Here, it is shown that RNF20 is localized at both centromeres and spindle poles, and it is required for oocyte acentrosomal spindle organization and female fertility. RNF20-depleted oocytes exhibit severely abnormal spindle and chromosome misalignment caused by defective bipolar organization. Notably, it is found that the function of RNF20 in spindle assembly is not dependent on its E3 ligase activity. Instead, RNF20 regulates spindle assembly by recruiting tropomyosin3 (TPM3) to both centromeres and spindle poles with its coiled-coil motif. The RNF20-TPM3 interaction is essential for acentrosomal meiotic spindle assembly. Together, the studies uncover a novel function for RNF20 in mediating TPM3 recruitment to both centromeres and spindle poles during oocyte spindle assembly.


Asunto(s)
Meiosis , Huso Acromático , Masculino , Femenino , Humanos , Huso Acromático/metabolismo , Oocitos/metabolismo , Polos del Huso/metabolismo , Centrómero
3.
Int J Biol Sci ; 19(15): 4883-4897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781512

RESUMEN

Alternative splicing (AS) plays significant roles in a multitude of fundamental biological activities. AS is prevalent in the testis, but the regulations of AS in spermatogenesis is only little explored. Here, we report that Serine/arginine-rich splicing factor 1 (SRSF1) plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf1 led to complete infertility by affecting spermatogenesis. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF1 affected the AS of Stra8 in a direct manner and Dazl, Dmc1, Mre11a, Syce2 and Rif1 in an indirect manner. Our findings demonstrate that SRSF1 has crucial functions in spermatogenesis and male fertility by regulating alternative splicing.


Asunto(s)
Empalme Alternativo , Espermatogénesis , Masculino , Empalme Alternativo/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Espermatogénesis/genética , Testículo/metabolismo , Animales
4.
BMC Biol ; 21(1): 231, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37867192

RESUMEN

BACKGROUND: RNA splicing plays significant roles in fundamental biological activities. However, our knowledge about the roles of alternative splicing and underlying mechanisms during spermatogenesis is limited. RESULTS: Here, we report that Serine/arginine-rich splicing factor 2 (SRSF2), also known as SC35, plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf2 by Stra8-Cre caused complete infertility and defective spermatogenesis. Further analyses revealed that deletion of Srsf2 disrupted differentiation and meiosis initiation of spermatogonia. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF2 regulatory networks play critical roles in several major events including reproductive development, spermatogenesis, meiotic cell cycle, synapse organization, DNA recombination, chromosome segregation, and male sex differentiation. Furthermore, SRSF2 affected expression and alternative splicing of Stra8, Stag3 and Atr encoding critical factors for spermatogenesis in a direct manner. CONCLUSIONS: Taken together, our results demonstrate that SRSF2 has important functions in spermatogenesis and male fertility by regulating alternative splicing.


Asunto(s)
Empalme del ARN , Espermatogénesis , Masculino , Humanos , Espermatogénesis/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo , Meiosis/genética , ARN Mensajero
5.
Aging (Albany NY) ; 15(13): 6292-6301, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37413994

RESUMEN

Heavy drinking in women is known to adversely affect pregnancy and fertility. However, pregnancy is a complex process, and the adverse effects of ethanol on pregnancy does not mean that ethanol will have adverse effects on all stages from gamete to fetal formation. Similarly, the adverse effects of ethanol before and after adolescence cannot be generalized. To focus on the effects of prepubertal ethanol on female reproductive ability, we established a mouse model of prepubertal ethanol exposure by changing drinking water to 20% v/v ethanol. Some routine detections were performed on the model mice, and details such as mating, fertility, reproductive organ and fetal weights were recorded day by day after discontinuation of ethanol exposure. Prepubertal ethanol exposure resulted in decreased ovarian weight and significantly reduced oocyte maturation and ovulation after sexual maturation, however, normal morphology oocytes with discharged polar body showed normal chromosomes and spindle morphology. Strikingly, oocytes with normal morphology from ethanol exposed mice showed reduced fertilization rate, but once fertilized they had the ability to develop to blastocysts. RNA-seq analysis showed that the gene expression of the ethanol exposed oocytes with normal morphology had been altered. These results show the adverse effects of prepubertal alcohol exposure on adult female reproductive health.


Asunto(s)
Etanol , Reproducción , Embarazo , Femenino , Ratones , Animales , Etanol/toxicidad , Oocitos , Fertilidad , Células Germinativas
6.
Development ; 150(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37485540

RESUMEN

Accurate chromosome segregation, monitored by the spindle assembly checkpoint (SAC), is crucial for the production of euploid cells. Previous in vitro studies by us and others showed that Mad2, a core member of the SAC, performs a checkpoint function in oocyte meiosis. Here, through an oocyte-specific knockout approach in mouse, we reconfirmed that Mad2-deficient oocytes exhibit an accelerated metaphase-to-anaphase transition caused by premature degradation of securin and cyclin B1 and subsequent activation of separase in meiosis I. However, it was surprising that the knockout mice were completely fertile and the resulting oocytes were euploid. In the absence of Mad2, other SAC proteins, including BubR1, Bub3 and Mad1, were normally recruited to the kinetochores, which likely explains the balanced chromosome separation. Further studies showed that the chromosome separation in Mad2-null oocytes was particularly sensitive to environmental changes and, when matured in vitro, showed chromosome misalignment, lagging chromosomes, and aneuploidy with premature separation of sister chromatids, which was exacerbated at a lower temperature. We reveal for the first time that Mad2 is dispensable for proper chromosome segregation but acts to mitigate environmental stress in meiotic oocytes.


Asunto(s)
Proteínas de Ciclo Celular , Huso Acromático , Animales , Ratones , Proteínas de Ciclo Celular/metabolismo , Huso Acromático/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Segregación Cromosómica/genética , Oocitos/metabolismo , Cinetocoros/metabolismo , Meiosis/genética
7.
Adv Sci (Weinh) ; 10(27): e2301940, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37493331

RESUMEN

Sperm-induced Ca2+ rise is critical for driving oocyte activation and subsequent embryonic development, but little is known about how lasting Ca2+ oscillations are regulated. Here it is shown that NLRP14, a maternal effect factor, is essential for keeping Ca2+ oscillations and early embryonic development. Few embryos lacking maternal NLRP14 can develop beyond the 2-cell stage. The impaired developmental potential of Nlrp14-deficient oocytes is mainly caused by disrupted cytoplasmic function and calcium homeostasis due to altered mitochondrial distribution, morphology, and activity since the calcium oscillations and development of Nlrp14-deficient oocytes can be rescued by substitution of whole cytoplasm by spindle transfer. Proteomics analysis reveal that cytoplasmic UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is significantly decreased in Nlrp14-deficient oocytes, and Uhrf1-deficient oocytes also show disrupted calcium homeostasis and developmental arrest. Strikingly, it is found that the mitochondrial Na+ /Ca2+ exchanger (NCLX) encoded by Slc8b1 is significantly decreased in the Nlrp14mNull oocyte. Mechanistically, NLRP14 interacts with the NCLX intrinsically disordered regions (IDRs) domain and maintain its stability by regulating the K27-linked ubiquitination. Thus, the study reveals NLRP14 as a crucial player in calcium homeostasis that is important for early embryonic development.


Asunto(s)
Calcio , Nucleósido-Trifosfatasa , Semen , Humanos , Masculino , Calcio/metabolismo , Homeostasis/fisiología , Oocitos/metabolismo , Semen/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Ubiquitinación , Animales , Ratones , Nucleósido-Trifosfatasa/metabolismo
8.
Cell Prolif ; 56(3): e13377, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36479743

RESUMEN

Pre-replication complex (pre-RC) is critical for DNA replication initiation. CDT1 and MCM2 are the subunits of pre-RC, and proper regulation of CDT1 and MCM2 are necessary for DNA replication and cell proliferation. The present study aimed to explore the role of CDT1 and MCM2 in oocyte meiotic maturation and early embryonic development. The depletion and overexpression of Cdt1 and Mcm2 in oocyte and zygote were achieved by microinjecting specific siRNA and mRNA to explored their functions in oocyte meiotic maturation and embryonic development. Then, we examined the effect of CDT1 and MCM2 on other signal pathways by immunostaining the expression of related maker genes. We showed that neither depletion nor overexpression of Cdt1 affected oocyte meiotic progressions. The CDT1 was degraded in S phase and remained at a low level in G2 phase of zygote. Exogenous expression of Cdt1 in G2 phase led to embryo attest at zygote stage. Mechanistically, CDT1 overexpression induced DNA re-replication and thus DNA damage check-point activation. Protein abundance of MCM2 was stable throughout the cell cycle, and embryos with overexpressed MCM2 could develop to blastocysts normally. Overexpression or depletion of Mcm2 also had no effect on oocyte meiotic maturation. Our results indicate that pre-RC subunits CDT1 and MCM2 are not involved in oocyte meiotic maturation. In zygote, CDT1 but not MCM2 is the major regulator of DNA replication in a cell cycle dependent manner. Furthermore, its' degradation is essential for zygotes to prevent from DNA re-replication in G2 stage.


Asunto(s)
Proteínas de Ciclo Celular , Cigoto , Cigoto/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Ciclo Celular , ADN
9.
J Cell Physiol ; 237(12): 4477-4486, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36183380

RESUMEN

Miro1, a mitochondrial Rho GTPase1, is a kind of mitochondrial outer membrane protein involved in the regulation of mitochondrial anterograde transport and its subcellular distribution. Mitochondria influence reproductive processes of mammals in some aspects. Mitochondria are important for oocyte maturation, fertilization and embryonic development. The purpose of this study was to evaluate whether Miro1 regulates mouse oocyte maturation by altering mitochondrial homeostasis. We showed that Miro1 was expressed in mouse oocyte at different maturation stages. Miro1 mainly distributed in the cytoplasm and around the spindle during oocyte maturation. Small interference RNA-mediated Miro1 depletion caused significantly abnormal distribution of mitochondria and endoplasmic reticulum as well as mitochondrial dysfunction, resulting in severely impaired germinal vesicle breakdown (GVBD) of mouse oocytes. For those oocytes which went through GVBD in the Miro1-depleted group, part of them were inhibited in meiotic prophase I stage with abnormal chromosome arrangement and scattered spindle length. Our results suggest that Miro1 is essential for maintaining the maturation potential of mouse oocyte.


Asunto(s)
Meiosis , Mitocondrias , Oocitos , Proteínas de Unión al GTP rho , Animales , Femenino , Ratones , Embarazo , Homeostasis , Mitocondrias/fisiología , Oocitos/fisiología , Oogénesis , Proteínas de Unión al GTP rho/fisiología
10.
J Cell Physiol ; 237(9): 3661-3670, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35853150

RESUMEN

AZD1208, a pan-inhibitor that can effectively inhibit PIM kinase, is used for the treatment of advanced solid tumors and malignant lymphomas. Numerous studies have proved its curative effects while its potential cellular toxicity on reproduction was still little known. In this study, we investigated the toxic effects of AZD1208 on mouse oocytes. The results showed that AZD1208 treatment did not affect meiotic resumption, but postponed oocyte maturation as indicated by delayed first polar body extrusion. Further mechanistic study showed that AZD1208 treatment delayed spindle assembly. In addition, we found that oocytes treated with AZD1208 showed mitochondrial dysfunction. Abnormal mitochondrial clusters with decreased mitochondrial membrane potential were observed in oocytes during incubation in vitro. Moreover, increased oxidative stress was observed by testing the level of reactive oxygen species. In summary, our results suggest that AZD1208 treatment influences oocyte meiotic progression by causing mitochondrial dysfunctions and subsequent delayed spindle assembly.


Asunto(s)
Compuestos de Bifenilo , Oocitos , Animales , Compuestos de Bifenilo/farmacología , Meiosis , Ratones , Mitocondrias , Oocitos/metabolismo , Tiazolidinas/metabolismo
11.
Int J Biol Sci ; 18(11): 4513-4531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864958

RESUMEN

During oocyte growth, various epigenetic modifications are gradually established, accompanied by accumulation of large amounts of mRNAs and proteins. However, little is known about the relationship between epigenetic modifications and meiotic progression. Here, by using Gdf9-Cre to achieve oocyte-specific ablation of Ehmt2 (Euchromatic-Histone-Lysine-Methyltransferase 2) from the primordial follicle stage, we found that female mutant mice were infertile. Oocyte-specific knockout of Ehmt2 caused failure of homologous chromosome separation independent of persistently activated SAC during the first meiosis. Further studies revealed that lacking maternal Ehmt2 affected the transcriptional level of Ccnb3, while microinjection of exogenous Ccnb3 mRNA could partly rescue the failure of homologous chromosome segregation. Of particular importance was that EHMT2 regulated ccnb3 transcriptions by regulating CTCF binding near ccnb3 gene body in genome in oocytes. In addition, the mRNA level of Ccnb3 significantly decreased in the follicles microinjected with Ctcf siRNA. Therefore, our findings highlight the novel function of maternal EHMT2 on the metaphase I-to-anaphase I transition in mouse oocytes: regulating the transcription of Ccnb3.


Asunto(s)
Segregación Cromosómica , Meiosis , Anafase , Animales , Femenino , Meiosis/genética , Ratones , Oocitos/metabolismo , ARN Mensajero/metabolismo
12.
Toxicology ; 476: 153243, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35760214

RESUMEN

OTSSP167 is an anti-tumor drug significantly inhibiting tumor growth in xenotransplantation studies using mouse breast, lung, prostate, and pancreatic cancer cell lines. Its phase I clinical trial has been completed, indicating its great potential for future treatment of solid tumors. However, its drug-related adverse effects on reproductive systems have not yet been reported. In this study, we evaluated the effects of OTSSP167 on reproduction of female mice by determining oocyte quality and follicular development. We selected four-week-old female ICR mice for a 21-day intraperitoneal injection of OTSSP167 at a dose of 5 mg/kg/d. We found that OTSSP167 could block the meiotic process of oocytes, leading to a decrease in oocyte maturation and ovulated oocyte numbers, as well as a decrease in the quality of oocytes. The results showed that OTSSP167 treatment caused disordered spindle assembly, decreased mitochondria membrane potential, and increased accumulation of reactive oxygen species in oocytes. Further investigation showed that OTSSP167 induced DNA double-strand breaks, as indicated by increased levels of γH2AX in oocytes of primordial follicles and granulosa cells of growing follicles, which induced follicular atresia and decreased the numbers of follicles at various growing stages. Our study suggests that OTSSP167 treatment may have serious effects on the ovary and consequences for female cancer patients, providing strong evidence for the necessity of protecting female fertility in clinical OTSSP167 trials.


Asunto(s)
Atresia Folicular , Oocitos , Animales , Femenino , Masculino , Meiosis , Ratones , Ratones Endogámicos ICR , Naftiridinas , Oogénesis
13.
Aging (Albany NY) ; 14(7): 3191-3202, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413689

RESUMEN

The developmental potential of oocytes decreases with time after ovulation in vivo or in vitro. Epitalon is a synthetic short peptide made of four amino acids (alanine, glutamic acid, aspartic acid, and glycine), based on a natural peptide called epithalamion extracted from the pineal gland. It is a potent antioxidant, comparable to melatonin, that may confer longevity benefits. The current study aims to test the protective effects of Epitalon on the quality of post-ovulatory aging oocytes. Epitalon at 0.1mM was added to the culture medium, and the quality of oocytes was evaluated at 6h, 12h, and 24h of culture. We found that 0.1mM Epitalon reduced intracellular reactive oxygen species. Epitalon treatment significantly decreased frequency of spindle defects and abnormal distribution of cortical granules during aging for 12h and 24h, while increased mitochondrial membrane potential and DNA copy number of mitochondria, thus decreasing apoptosis of oocytes by 24h of in vitro aging. Our results suggest that Epitalon can delay the aging process of oocytes in vitro via modulating mitochondrial activity and ROS levels.


Asunto(s)
Oligopéptidos , Oocitos , Envejecimiento , Animales , Femenino , Ratones , Oocitos/metabolismo , Ovulación , Especies Reactivas de Oxígeno/metabolismo
14.
FASEB J ; 36(3): e22210, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35167144

RESUMEN

Precise regulation of chromosome separation through spindle assembly checkpoint (SAC) during oocyte meiosis is critical for mammalian reproduction. The kinetochore plays an important role in the regulation of SAC through sensing microtubule tension imbalance or missing microtubule connections. Here, we report that kinetochore scaffold 1 (KNL1, also known as CASC5), an outer kinetochore protein, plays a critical role in the SAC function of mouse oocytes. KNL1 localized at kinetochores from GVBD to the MII stage, and microinjection of KNL1-siRNA caused accelerated metaphase-anaphase transition and premature first meiosis completion, producing aneuploid eggs. The SAC was prematurely silenced in the presence of unstable kinetochore-microtubule attachments and misaligned chromosomes in KNL1-depleted oocytes. Additionally, KNL1 and MPS1 had a synergistic effect on the activation and maintenance of SAC. Taken together, our results suggest that KNL1, as a kinetochore platform protein, stabilizes SAC to ensure timely anaphase entry and accurate chromosome segregation during oocyte meiotic maturation.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Meiosis , Proteínas Asociadas a Microtúbulos/metabolismo , Oocitos/metabolismo , Oogénesis , Animales , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos ICR , Proteínas Asociadas a Microtúbulos/genética , Oocitos/citología
15.
Cell Death Dis ; 12(10): 883, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580275

RESUMEN

Protein phosphatase 6 (PP6) is a member of the PP2A-like subfamily, which plays significant roles in numerous fundamental biological activities. We found that PPP6C plays important roles in male germ cells recently. Spermatogenesis is supported by the Sertoli cells in the seminiferous epithelium. In this study, we crossed Ppp6cF/F mice with AMH-Cre mice to gain mutant mice with specific depletion of the Ppp6c gene in the Sertoli cells. We discovered that the PPP6C cKO male mice were absolutely infertile and germ cells were largely lost during spermatogenesis. By combing phosphoproteome with bioinformatics analysis, we showed that the phosphorylation status of ß-catenin at S552 (a marker of adherens junctions) was significantly upregulated in mutant mice. Abnormal ß-catenin accumulation resulted in impaired testicular junction integrity, thus led to abnormal structure and functions of BTB. Taken together, our study reveals a novel function for PPP6C in male germ cell survival and differentiation by regulating the cell-cell communication through dephosphorylating ß-catenin at S552.


Asunto(s)
Dominio Catalítico , Eliminación de Gen , Fosfoproteínas Fosfatasas/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis , Animales , Apoptosis , Epidídimo/metabolismo , Exones/genética , Infertilidad Masculina/genética , Integrasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas Fosfatasas/deficiencia , Fosfoproteínas/metabolismo , Fosforilación , Proteoma/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/patología , beta Catenina/metabolismo
16.
Front Cell Dev Biol ; 9: 671685, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277613

RESUMEN

The quality of oocytes is a vital factor for embryo development. Meiotic progression through metaphase I usually takes a relatively long time to ensure correct chromosome separation, a process that is critical for determining oocyte quality. Here, we report that cell division cycle 5-like (Cdc5L) plays a critical role in regulating metaphase-to-anaphase I transition during mouse oocyte meiotic maturation. Knockdown of Cdc5L by small interfering RNA injection did not affect spindle assembly but caused metaphase I arrest and subsequent reduced first polar body extrusion due to insufficient anaphase-promoting complex/cyclosome activity. We further showed that Cdc5L could also directly interact with securin, and Cdc5L knockdown led to a continuous high expression level of securin, causing severely compromised meiotic progression. The metaphase-to-anaphase I arrest caused by Cdc5L knockdown could be rescued by knockdown of endogenous securin. In summary, we reveal a novel role for Cdc5L in regulating mouse oocyte meiotic progression by interacting with securin.

17.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119044, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33865884

RESUMEN

Cyclin D-CDK4/6 complex mediates the transition from the G1 to S phase in mammalian somatic cells. Meiotic oocytes pass through the G2/M transition and complete the first meiosis to reach maturation at the metaphase of meiosis II without intervening S phase, while Cyclin D-CDK4/6 complex is found to express during meiotic progression. Whether Cyclin D-CDK4/6 complex regulates meiotic cell cycle progression is not known. Here, we found its different role in oocyte meiosis: Cyclin D-CDK4/6 complex served as a regulator of spindle assembly checkpoint (SAC) to prevent aneuploidy in meiosis I. Inhibition of CDK4/6 kinases disrupted spindle assembly, chromosome alignment and kinetochore-microtubule attachments, but unexpectedly accelerated meiotic progression by inactivating SAC, consequently resulting in production of aneuploid oocytes. Further studies showed that the MPF activity decrease before first polar body extrusion was accelerated probably by inactivation of the SAC to promote ubiquitin-mediated cyclin B1 degradation. Taken together, these data reveal a novel role of Cyclin D-CDK4/6 complex in mediating control of the SAC in female meiosis I.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Aneuploidia , Animales , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Ciclina B1/metabolismo , Femenino , Meiosis/fisiología , Mesotelina , Metafase/fisiología , Ratones , Ratones Endogámicos ICR , Oocitos/metabolismo , Cuerpos Polares/metabolismo , Huso Acromático/metabolismo
18.
Toxicology ; 452: 152705, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33548356

RESUMEN

Gefitinib is a first-line anti-cancer drug for the treatment of advanced non-small cell lung cancer (NSCLC). It has been reported that gefitinib can generate several drug-related adverse effects, including nausea, peripheral edema, decreased appetite and rash. However, the reproductive toxicity of gefitinib has not been clearly defined until now. Here we assessed the effects of gefitinib on oocyte quality by examining the critical events and molecular changes of oocyte maturation. Gefitinib at 1, 2, 5 or 10 µM concentration was added to culture medium (M2). We found that gefitinib at its median peak concentration of 1 µM did not affect oocyte maturation, but 5 µM gefitinib severely blocked oocyte meiotic progression as indicated by decreased rates of germinal vesicle breakdown (GVBD) and polar body extrusion (PBE). We further showed that gefitinib treatment increased phosphorylation of CDK1 at the site of Try15, inhibited cyclin B1 entry into the nucleus, and disrupted normal spindle assembly, chromosome alignment and mitochondria dynamics, finally leading to the generation of aneuploidy and early apoptosis of oocytes. Our study reported here provides valuable evidence for reproductive toxicity of gefitinib administration employed for the treatment of cancer patients.


Asunto(s)
Antineoplásicos/toxicidad , Gefitinib/toxicidad , Meiosis/efectos de los fármacos , Oocitos/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Meiosis/fisiología , Ratones , Ratones Endogámicos ICR , Oocitos/metabolismo , Oocitos/patología , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Huso Acromático/patología
19.
Hum Mol Genet ; 30(7): 525-535, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33575778

RESUMEN

Oogenesis is a highly regulated process and its basic cellular events are evolutionarily conserved. However, the time spans of oogenesis differ substantially among species. To explore these interspecies differences in oogenesis, we performed single-cell RNA-sequencing on mouse and monkey female germ cells and downloaded the single-cell RNA-sequencing data of human female germ cells. The cell cycle analyses indicate that the period and extent of cell cycle transitions are significantly different between the species. Moreover, hierarchical clustering of critical cell cycle genes and the interacting network of cell cycle regulators also exhibit distinguished patterns across species. We propose that differences in the regulation of cell cycle transitions may underlie female germ cell developmental allochrony between species. A better understanding of the cell cycle transition machinery will provide new insights into the interspecies differences in female germ cell developmental time spans.


Asunto(s)
Ciclo Celular/genética , Oocitos/metabolismo , Oogénesis/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Macaca fascicularis , Ratones , Oocitos/citología , Especificidad de la Especie , Factores de Tiempo
20.
Nat Aging ; 1(11): 1010-1023, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-37118338

RESUMEN

Female ovaries degenerate about 20 years earlier than testes leading to reduced primordial follicle reserve and a reduction in oocyte quality. Here we found that bridge integrator 2 (BIN2) is enriched in mouse ovaries and oocytes and that global knockout of this protein improves both female fertility and oocyte quality. Quantitative ovarian proteomics and phosphoproteomics showed that Bin2 knockout led to a decrease in phosphorylated ribosomal protein S6 (p-RPS6), a component of the mammalian target of rapamycin pathway and greatly increased nicotinamide nucleotide transhydrogenase (NNT), the free-radical detoxifier. Mechanistically, we find that phosphorylation of BIN2 at Thr423 and Ser424 leads to its translocation from the membrane to the cytoplasm, subsequent phosphorylation of RPS6 and inhibition of Nnt translation. We synthesized a BIN2-penetrating peptide (BPP) designed to inhibit BIN2 phosphorylation and found that a 3-week BPP treatment improved primordial follicle reserve and oocyte quality in aging and after chemotherapy-induced premature ovarian failure without discernible side effects.


Asunto(s)
Ovario , Transducción de Señal , Femenino , Ratones , Animales , Ovario/metabolismo , Fosforilación , Oocitos , Fertilidad , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...